On Landsberg and Berwald Spaces of Two Dimensional Finslerian Space with Special (α, β)-Metric
نویسندگان
چکیده
منابع مشابه
Two-dimensional Complex Berwald Spaces with (α, Β)-metrics
In this paper we study the two-dimensional complex Finsler spaces with (α, β)-metrics by using the complex Berwald frame. A special approach is dedicated to the complex Berwald spaces with (α, β) metrics. We establish the necessary and sufficient condition so that the complex Randers and Kropina spaces should be complex Berwald spaces, and we will illustrate the existence of these spaces in som...
متن کاملSome Remarks on Berwald Manifolds and Landsberg Manifolds
In the present paper, we shall prove new characterizations of Berwald spaces and Landsberg spaces. The main idea inthis research is the use of the so-called average Riemannian metric.
متن کاملFinslerian Lie Derivative and Landsberg Manifolds
In this paper we take a close look at Lie derivatives on a Finsler bundle and give a geometric meaning to the vanishing of the mixed curvature of certain covariant derivatives on a Finsler bundle. As an application, we obtain some characterizations of Landsberg manifolds.
متن کاملR-complex Finsler Spaces with (α, Β)-metric
In this paper we introduce the class of R-complex Finsler spaces with (α, β)-metrics and study some important exemples: R-complex Randers spaces, R-complex Kropina spaces. The metric tensor field of a R-complex Finsler space with (α, β)-metric is determined (§2). A special approach is dedicated to the R-complex Randers spaces (§3). AMS Mathematics Subject Classification (2000): 53B40, 53C60
متن کاملConcurrent vector fields on Finsler spaces
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: OALib
سال: 2019
ISSN: 2333-9721,2333-9705
DOI: 10.4236/oalib.1105244